Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0297667, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507348

RESUMO

Skin cancer is a common cancer affecting millions of people annually. Skin cells inside the body that grow in unusual patterns are a sign of this invasive disease. The cells then spread to other organs and tissues through the lymph nodes and destroy them. Lifestyle changes and increased solar exposure contribute to the rise in the incidence of skin cancer. Early identification and staging are essential due to the high mortality rate associated with skin cancer. In this study, we presented a deep learning-based method named DVFNet for the detection of skin cancer from dermoscopy images. To detect skin cancer images are pre-processed using anisotropic diffusion methods to remove artifacts and noise which enhances the quality of images. A combination of the VGG19 architecture and the Histogram of Oriented Gradients (HOG) is used in this research for discriminative feature extraction. SMOTE Tomek is used to resolve the problem of imbalanced images in the multiple classes of the publicly available ISIC 2019 dataset. This study utilizes segmentation to pinpoint areas of significantly damaged skin cells. A feature vector map is created by combining the features of HOG and VGG19. Multiclassification is accomplished by CNN using feature vector maps. DVFNet achieves an accuracy of 98.32% on the ISIC 2019 dataset. Analysis of variance (ANOVA) statistical test is used to validate the model's accuracy. Healthcare experts utilize the DVFNet model to detect skin cancer at an early clinical stage.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/patologia , Dermoscopia/métodos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Cutâneas/patologia
2.
PLoS One ; 19(3): e0296352, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38470893

RESUMO

Chest disease refers to a wide range of conditions affecting the lungs, such as COVID-19, lung cancer (LC), consolidation lung (COL), and many more. When diagnosing chest disorders medical professionals may be thrown off by the overlapping symptoms (such as fever, cough, sore throat, etc.). Additionally, researchers and medical professionals make use of chest X-rays (CXR), cough sounds, and computed tomography (CT) scans to diagnose chest disorders. The present study aims to classify the nine different conditions of chest disorders, including COVID-19, LC, COL, atelectasis (ATE), tuberculosis (TB), pneumothorax (PNEUTH), edema (EDE), pneumonia (PNEU). Thus, we suggested four novel convolutional neural network (CNN) models that train distinct image-level representations for nine different chest disease classifications by extracting features from images. Furthermore, the proposed CNN employed several new approaches such as a max-pooling layer, batch normalization layers (BANL), dropout, rank-based average pooling (RBAP), and multiple-way data generation (MWDG). The scalogram method is utilized to transform the sounds of coughing into a visual representation. Before beginning to train the model that has been developed, the SMOTE approach is used to calibrate the CXR and CT scans as well as the cough sound images (CSI) of nine different chest disorders. The CXR, CT scan, and CSI used for training and evaluating the proposed model come from 24 publicly available benchmark chest illness datasets. The classification performance of the proposed model is compared with that of seven baseline models, namely Vgg-19, ResNet-101, ResNet-50, DenseNet-121, EfficientNetB0, DenseNet-201, and Inception-V3, in addition to state-of-the-art (SOTA) classifiers. The effectiveness of the proposed model is further demonstrated by the results of the ablation experiments. The proposed model was successful in achieving an accuracy of 99.01%, making it superior to both the baseline models and the SOTA classifiers. As a result, the proposed approach is capable of offering significant support to radiologists and other medical professionals.


Assuntos
COVID-19 , Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Radiografia , Tosse , Tomografia Computadorizada por Raios X
3.
Diagnostics (Basel) ; 13(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37685310

RESUMO

Chest disease refers to a variety of lung disorders, including lung cancer (LC), COVID-19, pneumonia (PNEU), tuberculosis (TB), and numerous other respiratory disorders. The symptoms (i.e., fever, cough, sore throat, etc.) of these chest diseases are similar, which might mislead radiologists and health experts when classifying chest diseases. Chest X-rays (CXR), cough sounds, and computed tomography (CT) scans are utilized by researchers and doctors to identify chest diseases such as LC, COVID-19, PNEU, and TB. The objective of the work is to identify nine different types of chest diseases, including COVID-19, edema (EDE), LC, PNEU, pneumothorax (PNEUTH), normal, atelectasis (ATE), and consolidation lung (COL). Therefore, we designed a novel deep learning (DL)-based chest disease detection network (DCDD_Net) that uses a CXR, CT scans, and cough sound images for the identification of nine different types of chest diseases. The scalogram method is used to convert the cough sounds into an image. Before training the proposed DCDD_Net model, the borderline (BL) SMOTE is applied to balance the CXR, CT scans, and cough sound images of nine chest diseases. The proposed DCDD_Net model is trained and evaluated on 20 publicly available benchmark chest disease datasets of CXR, CT scan, and cough sound images. The classification performance of the DCDD_Net is compared with four baseline models, i.e., InceptionResNet-V2, EfficientNet-B0, DenseNet-201, and Xception, as well as state-of-the-art (SOTA) classifiers. The DCDD_Net achieved an accuracy of 96.67%, a precision of 96.82%, a recall of 95.76%, an F1-score of 95.61%, and an area under the curve (AUC) of 99.43%. The results reveal that DCDD_Net outperformed the other four baseline models in terms of many performance evaluation metrics. Thus, the proposed DCDD_Net model can provide significant assistance to radiologists and medical experts. Additionally, the proposed model was also shown to be resilient by statistical evaluations of the datasets using McNemar and ANOVA tests.

4.
Bioengineering (Basel) ; 10(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36829697

RESUMO

Due to the rapid rate of SARS-CoV-2 dissemination, a conversant and effective strategy must be employed to isolate COVID-19. When it comes to determining the identity of COVID-19, one of the most significant obstacles that researchers must overcome is the rapid propagation of the virus, in addition to the dearth of trustworthy testing models. This problem continues to be the most difficult one for clinicians to deal with. The use of AI in image processing has made the formerly insurmountable challenge of finding COVID-19 situations more manageable. In the real world, there is a problem that has to be handled about the difficulties of sharing data between hospitals while still honoring the privacy concerns of the organizations. When training a global deep learning (DL) model, it is crucial to handle fundamental concerns such as user privacy and collaborative model development. For this study, a novel framework is designed that compiles information from five different databases (several hospitals) and edifies a global model using blockchain-based federated learning (FL). The data is validated through the use of blockchain technology (BCT), and FL trains the model on a global scale while maintaining the secrecy of the organizations. The proposed framework is divided into three parts. First, we provide a method of data normalization that can handle the diversity of data collected from five different sources using several computed tomography (CT) scanners. Second, to categorize COVID-19 patients, we ensemble the capsule network (CapsNet) with incremental extreme learning machines (IELMs). Thirdly, we provide a strategy for interactively training a global model using BCT and FL while maintaining anonymity. Extensive tests employing chest CT scans and a comparison of the classification performance of the proposed model to that of five DL algorithms for predicting COVID-19, while protecting the privacy of the data for a variety of users, were undertaken. Our findings indicate improved effectiveness in identifying COVID-19 patients and achieved an accuracy of 98.99%. Thus, our model provides substantial aid to medical practitioners in their diagnosis of COVID-19.

5.
Multimed Tools Appl ; 82(9): 13855-13880, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36157356

RESUMO

Coronavirus (COVID-19) has adversely harmed the healthcare system and economy throughout the world. COVID-19 has similar symptoms as other chest disorders such as lung cancer (LC), pneumothorax, tuberculosis (TB), and pneumonia, which might mislead the clinical professionals in detecting a new variant of flu called coronavirus. This motivates us to design a model to classify multi-chest infections. A chest x-ray is the most ubiquitous disease diagnosis process in medical practice. As a result, chest x-ray examinations are the primary diagnostic tool for all of these chest infections. For the sake of saving human lives, paramedics and researchers are working tirelessly to establish a precise and reliable method for diagnosing the disease COVID-19 at an early stage. However, COVID-19's medical diagnosis is exceedingly idiosyncratic and varied. A multi-classification method based on the deep learning (DL) model is developed and tested in this work to automatically classify the COVID-19, LC, pneumothorax, TB, and pneumonia from chest x-ray images. COVID-19 and other chest tract disorders are diagnosed using a convolutional neural network (CNN) model called CDC Net that incorporates residual network thoughts and dilated convolution. For this study, we used this model in conjunction with publically available benchmark data to identify these diseases. For the first time, a single deep learning model has been used to diagnose five different chest ailments. In terms of classification accuracy, recall, precision, and f1-score, we compared the proposed model to three CNN-based pre-trained models, such as Vgg-19, ResNet-50, and inception v3. An AUC of 0.9953 was attained by the CDC Net when it came to identifying various chest diseases (with an accuracy of 99.39%, a recall of 98.13%, and a precision of 99.42%). Moreover, CNN-based pre-trained models Vgg-19, ResNet-50, and inception v3 achieved accuracy in classifying multi-chest diseases are 95.61%, 96.15%, and 95.16%, respectively. Using chest x-rays, the proposed model was found to be highly accurate in diagnosing chest diseases. Based on our testing data set, the proposed model shows significant performance as compared to its competitor methods. Statistical analyses of the datasets using McNemar's, and ANOVA tests also showed the robustness of the proposed model.

6.
Sensors (Basel) ; 22(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35957209

RESUMO

Skin cancer is a deadly disease, and its early diagnosis enhances the chances of survival. Deep learning algorithms for skin cancer detection have become popular in recent years. A novel framework based on deep learning is proposed in this study for the multiclassification of skin cancer types such as Melanoma, Melanocytic Nevi, Basal Cell Carcinoma and Benign Keratosis. The proposed model is named as SCDNet which combines Vgg16 with convolutional neural networks (CNN) for the classification of different types of skin cancer. Moreover, the accuracy of the proposed method is also compared with the four state-of-the-art pre-trained classifiers in the medical domain named Resnet 50, Inception v3, AlexNet and Vgg19. The performance of the proposed SCDNet classifier, as well as the four state-of-the-art classifiers, is evaluated using the ISIC 2019 dataset. The accuracy rate of the proposed SDCNet is 96.91% for the multiclassification of skin cancer whereas, the accuracy rates for Resnet 50, Alexnet, Vgg19 and Inception-v3 are 95.21%, 93.14%, 94.25% and 92.54%, respectively. The results showed that the proposed SCDNet performed better than the competing classifiers.


Assuntos
Aprendizado Profundo , Melanoma , Neoplasias Cutâneas , Dermoscopia/métodos , Humanos , Melanoma/diagnóstico por imagem , Redes Neurais de Computação , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia
7.
J Pers Med ; 12(2)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35207763

RESUMO

Brain tumors are a deadly disease with a high mortality rate. Early diagnosis of brain tumors improves treatment, which results in a better survival rate for patients. Artificial intelligence (AI) has recently emerged as an assistive technology for the early diagnosis of tumors, and AI is the primary focus of researchers in the diagnosis of brain tumors. This study provides an overview of recent research on the diagnosis of brain tumors using federated and deep learning methods. The primary objective is to explore the performance of deep and federated learning methods and evaluate their accuracy in the diagnosis process. A systematic literature review is provided, discussing the open issues and challenges, which are likely to guide future researchers working in the field of brain tumor diagnosis.

8.
Multimed Syst ; 28(3): 815-829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35068705

RESUMO

Globally, coronavirus disease (COVID-19) has badly affected the medical system and economy. Sometimes, the deadly COVID-19 has the same symptoms as other chest diseases such as pneumonia and lungs cancer and can mislead the doctors in diagnosing coronavirus. Frontline doctors and researchers are working assiduously in finding the rapid and automatic process for the detection of COVID-19 at the initial stage, to save human lives. However, the clinical diagnosis of COVID-19 is highly subjective and variable. The objective of this study is to implement a multi-classification algorithm based on deep learning (DL) model for identifying the COVID-19, pneumonia, and lung cancer diseases from chest radiographs. In the present study, we have proposed a model with the combination of Vgg-19 and convolutional neural networks (CNN) named BDCNet and applied it on different publically available benchmark databases to diagnose the COVID-19 and other chest tract diseases. To the best of our knowledge, this is the first study to diagnose the three chest diseases in a single deep learning model. We also computed and compared the classification accuracy of our proposed model with four well-known pre-trained models such as ResNet-50, Vgg-16, Vgg-19, and inception v3. Our proposed model achieved an AUC of 0.9833 (with an accuracy of 99.10%, a recall of 98.31%, a precision of 99.9%, and an f1-score of 99.09%) in classifying the different chest diseases. Moreover, CNN-based pre-trained models VGG-16, VGG-19, ResNet-50, and Inception-v3 achieved an accuracy of classifying multi-diseases are 97.35%, 97.14%, 97.15%, and 95.10%, respectively. The results revealed that our proposed model produced a remarkable performance as compared to its competitor approaches, thus providing significant assistance to diagnostic radiographers and health experts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...